Basis-Independent Polynomial Division Algorithm Applied to Division in Lagrange and Bernstein Basis
نویسنده
چکیده
Division algorithms for univariate polynomials represented with respect to Lagrange and Bernstein basis are developed. These algorithms are obtained by abstracting from the classical polynomial division algorithm for polynomials represented with respect to the usual power basis. It is shown that these algorithms are quadratic in the degrees of their inputs, as in the power basis case.
منابع مشابه
Division algorithms for Bernstein polynomials
Three division algorithms are presented for univariate Bernstein polynomials: an algorithm for finding the quotient and remainder of two univariate polynomials, an algorithm for calculating the GCD of an arbitrary collection of univariate polynomials, and an algorithm for computing a μ-basis for the syzygy module of an arbitrary collection of univariate polynomials. Division algorithms for mult...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملBernstein-Polynomials-Based Highly Accurate Methods for One-Dimensional Interface Problems
A new numerical method based on Bernstein polynomials expansion is proposed for solving onedimensional elliptic interface problems. Both Galerkin formulation and collocation formulation are constructed to determine the expansion coefficients. In Galerkin formulation, the flux jump condition can be imposed by the weak formulation naturally. In collocation formulation, the results obtained by B-p...
متن کاملComputing the Bézier Control Points of the Lagrangian Interpolant in Arbitrary Dimension
The Bernstein-Bézier form of a polynomial is widely used in the fields of computer aided geometric design, spline approximation theory and, more recently, for high order finite element methods for the solution of partial differential equations. However, if one wishes to compute the classical Lagrange interpolant relative to the Bernstein basis, then the resulting Bernstein-Vandermonde matrix is...
متن کاملBernstein Bases are Optimal , but , sometimes , Lagrange Bases are Better
Experimental observations of rootfinding by generalized companion matrix pencils expressed in the Lagrange basis show that the method can sometimes be numerically stable, and indeed sometimes be much more stable than rootfinding of polynomials expressed in even the Bernstein basis. This paper details some of those experiments and provides a theoretical justification for this. We prove that a ne...
متن کامل